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FOREWORD

This is a final report on the research project, “Instability Wave Models and Supersonic Jet
Noise.” The report titled “The Effects of Velocity Profiles on Supersonic Jet Noise” presented
some of the earlier work done on this research project and, therefore, is not repeated here. Recent
research activities were directed in the area of “Nonlinear Stability of Supersonic Jets.”

The funding for this research was provided by the NASA Langley Research Center through
the Grant NAG-1-1518. The grant was monitored by Dr. John M. Seiner of Aeroacoustics
Branch (Fluid Mechanics and Acoustics Division), Mail Stop 165, NASA Langley Research

Center, Hampton, VA 23681.
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NONLINEAR STABILITY OF SUPERSONIC JETS
T. R. S. Bhat! and S. N. Tiwari§

Department of Mechanical Engineering
Old Dominion University, Norfolk, VA 23529-0247

ABSTRACT

The stability calculations made for a shock-free supersonic jet using the model
based on parabolized stability equations are presented. In this analysis the large-
scale structures, which play a dominant role in the mixing as well as the noise
radiated, are modeled as instability waves. This model takes into consideration
non-parallel flow effects and also nonlinear interaction of the instability waves. The
stability calculations have been performed for different frequencies and mode num-
bers over a range of jet operating temperatures. Comparisons are made, where ap-
propriate, with the solutions to Rayleigh’s equation (linear, inviscid analysis with
the assumption of parallel flow). The comparison of the solutions obtained using

the two approaches show very good agreement.
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1. INTRODUCTION

The aerospace engineering community has placed a major emphasis on the
development of a high speed civil transport aircraft. The success of this effort
hinges on several factors. One of the major problems that needs to be addressed is
the environmental issue of the noise generated by aircraft at take-off, cutback, and
approach engine power settings. Jet noise represents a significant percentage of the
overall noise generated. Hence, the reduction of jet noise is of utmost importance
to future development of a supersonic civil aircraft. This has led to a revival of
interest in developing techniques to predict and ultimately suppress noise radiated
by supersonic jets.

Several approaches have been developed for the prediction of jet noise. One
such approach is the direct numerical simulation of the full Navier-Stokes equations
for the estimation of the radiated noise. This technique, although exact, is not prac-
tical because of the requirements of the computational resources. This has led to
development of models based on simplified governing equations. Mankbadi et al.!
developed such a technique by using large-eddy simulation to model the flow field
and calculated the far-field noise by applying Lighthill’s acoustic analogy. These
techniques also require extensive computational power. Recently, there has been
lot of focus on extending computational fluid dynamics techniques for aeroacoustic
applications. The development of these techniques are not simple as the require-
ments on numerical dissipation, dispersion, etc. for acoustic analysis are very rigid,
see Tam?.

A different approach for the prediction of jet noise is based on combining the-
oretical and analytical methods. It is well established that turbulent flows possess
coherent large-scale structures. These structures control the turbulent mixing pro-
cess and also play a dominant role in the noise generation process. It has been
successfully shown, in free shear layers such as plane mixing layers and jets, that
the large-scale motions can be modeled as a random superposition of instability
waves. The noise generated by these waves compare well with the experimental
data. A good review of this approach is presented in Tam®. This model can be
used to determine the two important characteristics of an instability wave, phase
velocity and growth rate, which determine the mixing as well as the noise radiated.

Most of the earlier theoretical studies of supersonic jets have considered linear,
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inviscid analysis and have assumed the mean flow to be parallel. Tam and Burton*
took into consideration the non-parallel flow effects by using the method of multiple-
scales. The real physical process of jets involve nonlinear interaction among all
turbulence scales. The nonlinearities considered in this paper may be divided into
nonlinear interaction between the instability waves and the mean flow, and the
nonlinear self interaction of the instability waves. The former leads to a change in
the mean-flow distribution, which in turn will modify the axial development of the
instability waves. This kind of nonlinear effect can be taken into account by using
measured mean velocity data. However, this data is not always readily available for
different flow conditions. The effects of nonlinear self-interaction of the instability
waves have been neglected in all the earlier studies by assuming that the amplitude
of the disturbances, which initiate the instability waves near the nozzle exit, are
small. This assumption may not be valid in all cases.

In this study, nonlinear stability analysis of supersonic jets is considered. This
analysis also accounts for non-parallel flows. The nonlinear interaction of the waves
are predicted by the solving the parabolized stability equations (PSE). Bertoloti et
al.> and Chang et al.® have applied PSE based technique for the stability analysis
of incompressible and compressible boundary layers. The mean flow varies slowly
in the axial direction enabling one to decompose the perturbation quantities into a
rapidly varying wave-like part and a slowly varying shape function. The PSE can
then be derived from the Navier-Stokes equations by applying parabolizing approx-
imation to the shape function. The simplified governing equations can be solved
by marching along the streamwise direction. This method is not computationally
expensive,

In this report stability calculations of supersonic jets using the PSE are pre-
sented. The calculations have been performed for different frequencies and mode
numbers over a range of jet temperatures, from cold to hot. In section 2, the de-
velopment of the PSE model is presented and in section 3 computational procedure
is described. The numerical results obtained for different cases are presented in
section 4. Finally, in section 5, a summary of the results is given and also ways of

improving the model and plans for future work are discussed.



2. ANALYSIS

Consider the development of instability waves generated in a shock-free jet. It
is assumed that the instability waves are governed by the compressible equations of
motion, energy and state for a perfect gas. The flow variables are decomposed into

a mean value and a perturbation quantity
f(r,8,z,t) = f(r,8,z) + f'(r,6,2,%) (2.1)

where f is any flow variable and (r,8, ) is the polar coordinate system with z in
the axial direction. The governing equations for the disturbances are obtained by
substituting the form given by equation (2.1) in the governing equations and sub-

tracting the equations for the mean flow. The resulting equations can be expressed

as
3¢ 09 0¢ 0¢ 9% 0%¢
Lot tAg, T Bag +Co t D¢ =Varggz + Vargg
3¢ 9%¢ 8¢ 9%¢
+Ver— 52 + Vr@a 20 + Vor m7a- 60 + Voo oy 50 (2.2)

where ¢ is the disturbance vector and is given by ¢ = (p',u’,v’,w',p')T. The
coefficient matrices, I', A, B, ..., Vp, and Vyy are composed of a linear part and a
nonlinear part. The linear part (denoted by superscripts !) contains only mean flow
quantities and the nonlinear part (denoted by superscripts n) contains disturbance

quantities , i.e. I' = 'Y 4+ T'?, etc. Equation (2.2) can then be rearranged as

¢ d¢ ¢ ¢ %4
{ { l { { l
Fat+Aa+Baa+Ca+D¢ "a
824 %9 024 ¢

_ i l 1 l

V"axa Ve g or? V'Ba o6 ~ Vo 800z

{ 82¢ n
Veg 892 = F (2.3)

where F™ includes all nonlinear interaction terms associated with the disturbances
and is given by
86 _ 1n08 _ 508

Fr=_nZ2 _gn? _ond

5t Ve, Ba e DY

n0°8  n 0% n0%¢ ¢ n 0°9
+V1162+Vzraa +Vrraz+ r9669+ 0:696
0%¢

+ Vivagm (2.4)
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The governing equations (2.3) have to be parabolized to enable a marching
solution in the streamwise direction. This is accomplished by decomposing the dis-
turbances into a rapidly varying wave-like part and a slowly varying shape function.
The wave part retains its ellipticity while the governing equations for the shape func-
tion are parabolized. We assume that the disturbance vector ¢ for an instability

wave ‘with a frequency mw and azimuthal mode number n can be expressed as

é(r,6,z,t) = z_: _Z U pnn(7, 2)Xmn (6, z,1) (2.5)

m=—o0o0c n=—0o0

where the wave-like part Xmn 1s given by

o = exp{i [ / e (£)dE + 1 — mwt] } (2.6)

G mn is the axial wavenumber and ¥,,, is the shape function vector given by ¥,,,, =
(p,@,0,%,p)T. As the shape function is assumed to vary slowly with the streamwise
direction r, the second derivative 82¥/0z? is very small and is neglected. The
governing equations for the shape function of a single mode (m,n), using the form

given by equation (2.5), can then be written as

- 2 a‘I’mn A 6‘]:Jm'n l 62\Ijmn
Dmn\I’mn + Amn _6-.’L'—+0mn_-a'r— = Vrr 37‘2
+ Fnn/Amn (2.7)

where

Amn = exp [z/ amn(ﬁ)df}

The nonlinear forcing function F,,, can be evaluated from the Fourier series expan-

sion of F'"
m=00 n=oco

F*(r,0,z,t) = Z Z Frnn exp [i(n6 — mwt)] (2.8)

m=—o00 n=—00
In equation (2.7), the elliptic effect associated with the wave part is absorbed in
matrices D, A and € and does not contribute to the upstream influence. However,
the term 0p/0z allows upstream influence in subsonic regions of the flow. In order
to make equation (2.7) truly parabolic, dp/0z is multipled by a constant  given
by

M2
Q= { Fe-naz, M: <1 (2.9)
1 M, >1
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where M, is the local Mach number. This parabolizing procedure yield solutions for
the parabolized Navier-Stokes equations which compare well with those obtained

by the full Navier-Stokes equations, see Rubin”.



3. NUMERICAL SCHEME

The parabolized stability equation (2.7) is solved numerically by finite-
differencing the derivatives with respect to ¢ and r. In the formulation given below,
¥, ; represents the shape function with an axial location index ¢ and radial location
denoted by index j. The streamwise derivative at (z, j) is replaced by a second-order

backward difference given by

ov

5e = (B = 4¥io i+ Wiy j)/202 (3.1)

for all axial locations except for the starting plane where a first-order backward
differencing is used. The resulting discretized equation for the i-th axial plane is

3 0 , 02

Dt gA+Cn Vi y

AL 3 v,;= /i,',j(4\1’,'_1,j - \I/,’_g’j)/QA.’L‘ +F/.A (3.2)

where for convenience, the subscript mn which identifies the mode (m, n) is dropped.
The radial derivatives are discretized using a fourth-order central differencing and

are given by

0¥ _ —Wij42+8¥i;4y —8¥; 1+ i,

= 3.3
or 12Ar (3:3)
o’ _ —‘I’.‘,j+2 + 16\1’,',]'4.1 - 30\11,"]' + 16‘1’,"]'_1 - ‘Il,',j_z 34
or: 12Ar2 (3-4)

The above finite differencing scheme is replaced by a second-order scheme for the

grid point next to the boundary. The second-order scheme can be written as

ov

_6—7:=

(i1 — VUij+1)/24r (3.5)

v 2
Bz = (P, ;41— 2% + Vi ;-1)/2Ar (3.6)
The finite difference formulations given above are substituted into equation (2.7).
This coupled with the boundary conditions results in a block penta-diagonal system
of equations (block size of 5 x 5) at each axial location for the unknown shape
functions, V.
The boundary conditions have to be prescribed for the eigenfunctions at the jet

centerline and at a radial location of infinity. As the governing equations become



7

singular at r = 0, L’Hospital’s rule is applied at the centerline to obtain a new set of
governing equations. The boundary conditions along the centerline takes a different
form based on the azimuthal mode number. For example, for axisymmetric mode,

i.e. n = 0, the boundary conditions at » =0 are given by
i= 09=0, dw/Or= 0p/Oor=20 (3.7)

Here, the velocity components i,%,® are in the r,0,z directions, respectively. The
boundary condition on density is obtained from (3.7) and the discretized continuity
equation. At the outer boundary, far from the centerline, all the shape functions
are set equal to zero. For the nonlinear analysis, the far-field boundary conditions
can be directly applied for all modes except for modes with zero frequency (m = 0)
and axisymmetric mode (n = 0). The case of m = 0 and n = 0 is referred to as
the mean flow correction mode. For this mode, the condition @ = 0 is replaced by
dujor = 0.

The solution procedure is as follows: start with a known solution for am, and
U,., at T = zo, assume a value for amn at the next axial location, march the PSE

to the next station by solving for ¥,,,. The new value of amy is determined from

1 d¥mn

mn 4T

Umn, new = Qmn, old ~ (3.8)
and this process is repeated until the difference between the assumed and computed
values of amp is less than a given tolerance. The updating procedure given above is
equivalent to normalizing the shape function such that d¥/dz is zero at a particular
radial location. As the shape function vector ¥ is a function of  and contains five
dependent variables, there is no unique wavenumber as in the liner theory for parallel
flows. However, as shown by Chang et al.®, the total growth rate appears to be very
weakly dependent upon the normalization. Further details of the normalization and
its effect on the computed wavenumber are given in Chang et al.®. In all the results
presented here, we have chosen to compute the wavenumber based on streamwise

velocity using 'f0°° 4+03/0s dr
Omn, new = ¥mn, old — 1 = - 12 d (39)
fo | @ |% dr

where * denotes complex conjugate.



4. NUMERICAL RESULTS

The PSE has been used to analyze the linear stability of a supersonic jet is-
suing from a circular nozzle operating at design Mach number of 2.0. It has been
assumed that the axial evolution of the instability waves can be treated as an invis-
cid phenomena and F.n in equation (2.7) is zero. The results obtained for parallel
flows using the PSE are compared with the solutions to equation governing linear,
inviscid instability wave, i.e., the compressible Rayleigh’s equation. The solutions
to the Rayleigh's equation (RES) are obtained using the method of Seiner, Bhat
and Ponton®. For both the approaches, i.e., PSE and RES, the mean flow field is
assumed to be known. It has been shown that the mean velocity profile can be
closely approximated by a half-Gaussian function given by

<
Wi(z) = { %gggexp[—an(r — h)/b?% : > Z (4.1)
where h(z) is the radius of the potential core, b(z) is the half-width of the shear
layer and W,(z) is the jet centerline velocity. For the present calculations, the
values of these parameters are obtained from computational data of Viswanathan
et al.’.

Calculations have been performed for a range of frequencies and the modes
considered are n = 0, the axisymmetric mode, n = 1 and 2, the helical modes.
These calculations were carried out over a range of jet operating temperatures.
However, for conciseness, the results for n = 1 mode are shown here for a cold
jet. The two most important characteristics of an instability wave are the phase
velocity and growth rate. The phase velocity is defined as as 27 f /o, where f is the
frequency and a, is the real part of the complex wavenumber «. The growth rate is
defined as —a; where «; is the imaginary part of the wavenumber. Figures 1 and 2
compare the phase velocity and growth rates obtained using the two approaches at
two different axial locations. It can be seen that over the entire range of Strouhal
number (St = 2fr;/W;) considered, the two solutions are in very good agreement.
Similar agreements are also obtained for n = 0 and 2. Figures 3 and 4 show
the comparison as a function of downstream distance for axisymmetric mode (n
= 0) at St = 0.54 and the helical mode (n = 1) at St = 0.49. Once again, the

agreement is excellent for both the phase velocity and growth rate. As mentioned
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before, calculations have also been performed for hot jets obtaining good agreement

between the solutions using the two approaches.

The results presented so far have been obtained for parallel flows. We now
consider the solution of linear PSE with non-parallel flow effects. Asin any marching
scheme, an initial solution is needed to start the computations. To provide a good
starting solution, the multiple-scales analysis can be used which accounts for non-
parallel flow effects. It has been shown by Chang et al.® that using any incorrect
initial conditions result in a transient phenomena close to the jet exit. Furthermore,
it was observed that the PSE approach is capable of recovering the correct solution
in the marching process provided the input initial conditions are close to the correct
solution. In this study, the linear parallel stability equations are solved and the

eigenvalue and eigenfunctions are used as the starting solutions.

The linear PSE with non-parallel flow effects have been solved for several cases.
Figures 5 and 6 show the results for two of these cases. Once again, calculations
are carried out for a cold supersonic jet operating at its design Mach number of
2.0. In figure 5, the variation of the wavenumber (real part) and the growth rate
with axial distance is presented for axisymmetric mode (n = 0) at St = 0.54.
The results from parallel stability theory are included for comparison. As can be
seen, the wavenumber and the growth rates start off being less than those based
on parallel theory. After some initial transients, both the wavenumber and growth
rate are larger than those from parallel theory. This implies that the wave based
on non-parallel flow has a lower phase velocity than the wave based on parallel
flow. In addition, the wave corresponding to the non-parallel flow gets damped
further downstream than that obtained using parallel flow assumption. The results
for helical mode (n = 1) at St = 0.49 are presented in figure 6. Similar trends as
in axisymmetric mode are observed. The only difference is that the wavenumber

based on parallel and non-parallel mean flow are more or less the same.

The eigenfunction distribution for the cases discussed above are presented next.
Figure 7 shows the radial distributions of the eigenfunctions for the axisymmetric
mode, St = 0.54 at X/R; = 0. The eigenfunctions shown are the radial velocity
component, i, axial velocity component, 1w, and pressure, p. For this case, the az-
imuthal velocity component, 9, is zero. As can be seen, the axial velocity component
is very large and peaks in the shear layer. These eigenfunctions further downstream,

at X/R; = 10, are presented in figure 8. The amplitude of the pressure eigenfunc-
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tion has increased slightly while the amplitude of the axial velocity component has
decreased substantially. The axial location for peak noise emission, based on the
experimental observations of Troutt and McLaughlin!® and Seiner, et al.ll, occurs
near each wave’s neutral point. This suggests that the amplitude of pressure would
increase with downstream distance until the wave has become damped.

The eigenfunctions for n = 1, St = 0.49 at two axial locations, X/R; = 0 and
X/R; = 10 are shown in figures 9 and 10, respectively. In this case, the azimuthal
velocity component is nonzero. It can be seen that the trends are similar to that of
the axisymmetric mode. The only difference is that the amplitude of the azimuthal
velocity component, ©, has increased. Converged solutions to the nonlinear PSE
could not be obtained. Currently, this problem is being investigated. Some of the

possible reasons for not getting converged solutions are discussed in the next section.



11

5. DISCUSSIONS AND CONCLUSIONS

In this study, a model for linear and nonlinear stability analysis of supersonic
jets is developed using the parabolized stability equations. The linear PSE has
been used to analyze the instability waves of a supersonic jet operating at design
conditions, i.e., shock-free. For parallel flows, it has been shown that the PSE
approach and the solutions to Rayleigh’s equation are in very good agreement over
a range of frequencies and azimuthal mode numbers. The axial development of the
instability waves also compared well. These calculations also considered a range of
jet operating temperatures from cold to hot. The important characteristics of the
instability waves, i.e., phase velocity and growth rate, are predicted well using the
PSE.

The linear PSE model has also been used to study the non-parallel flow effects.
The computed solutions show that the growth rate is higher and the wave’s phase
velocity is lower than that corresponding to the parallel flow. This expected trend
is seen for instability waves of different frequencies and mode numbers. We have
assumed that the dynamics of the axial development of the instability waves can be
treated as an inviscid phenomena. At distances far downstream from the jet exit
the instability wave would no longer grow in amplitude and is damped. At these
locations the governing equations become singular and the integration contour must
be deformed around the critical point, see Tam'? and Tam and Morris’®. In this
study, the calculations are terminated close to the neutral point of the wave.

The results presented here are preliminary and is by no means complete. In
order to improve this model, there are several issues that need to be investigated.
First of all, the solutions obtained from linear parallel stability equations have been
used as the initial conditions for the marching scheme. The sensitivity of the initial
conditions to the converged solutions have to be studied. Solutions obtained using
the multiple-scales analysis, which accounts for non-parallel flow effects, can be
used as the initial conditions for the eigenvalue and the eigenfunctions. Secondly,
to circumvent the problem associated with the damped inviscid wave and to study
the effects of Reynolds number, viscous terms have to be included in the analysis.

As mentioned before, converged solutions to the nonlinear PSE could not be
obtained. It appears that the initial amplitudes of the various waves considered

play a critical role in getting converged solutions. Furthermore, the selection of the
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waves, with nonzero initial amplitudes, also influences the iterative process. The
effects of the initial amplitudes and the choice of the waves on getting converged
solutions should also be investigated. The solutions obtained from nonlinear PSE
analysis, after all the issues related to convergence have been identified and resolved,
can be validated by comparing it to solutions computed from nonlinear numerical

simulation, for example, the results of Viswanathan and Sankar!?.
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